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ABSTRACT 

We provide a new proof for a formula of Philip Hall concerning the orders 

of finite abelian groups. 

'Rather curious' is Hall's understated description of the following result [Ha38]: 

THEOREM: Le t  p be a prime.  Then  

1 1 
(1) ~ ~-[ -- Z [Aut(G)[ 

where the  s u m m a t i o n  ranges over all f inite abelian p-groups. 

Hall proves this by first noting that  the left hand side is equal to ~-~p(n)p -n,  

where p(n)  is the partition function (hence the sum converges), then enumerating 

partitions in a certain way, and applying an explicit expression for IAut(G)[. 

Another proof is given by Macdonald [Mc], which needs first the development 

of the formalism of 'Hall algebras'. Here we offer yet another proof. It uses 

a partition identity of Euler, and is based on ideas from the area of subgroup 

growth, i.e. counting finite index subgroups. See [Lu95] or [MS]. 

* The author is grateful to John Thompson for first drawing his attention to Hall's 
theorem, to Hershel Farkas for stimulating conversations on the subject of parti- 
tions, and to Marta Morigi for pointing out inaccuracies in an earlier version of 
this note. 
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Let F be a free abelian group of rank n. We consider subgroups H of F such 

that  F / H  is a finite p-group satisfying d ( F / H )  = n. Here we denote by d(G) the 

minimal number of generators of the group G. If G is a finite abelian p-group, 

then d(a) is given by pd(a) = la/apl. Since IF: FP I = p'~, the assumptions 

on H are equivalent to IF: H I being a power of p, and H <_ F p. Therefore the 

number of those subgroups H in our family which have index pn+k in F is equal 

to the number of subgroups of index pk in F p, and this is equal to the number 

of subgroups of the same index in F, because F p ~ F. Let ak =: ak(F) be this 

number. We write f ( s )  = ~ ak(p-k)  s. Then it is known that 

(2) f ( s )  = (1 - 1/pS)-l(1 - l ipS-l)  - 1 . . .  (1 - lipS-n+1) -1. 

See Theorem 2.1 of [Lu93] or [Lu95]. ([Lu93] contains four proofs of (2), including 

references to the original papers. Another proof is given in [Ma], eq. (Z) on p. 

444.) 

We now count the subgroups H according to their factor groups G = F / H .  

Given an abelian p-group G, the number of subgroups H < F such that  F / H  ~- 

G is equal to [Epi(F ,a) l / lAut(G)[  ([Ha36], 1.4). Here Epi(V,G) denotes the 

set of homomorphisms of F onto G, and I Epi(F, G)[ is equal to the number of 

ordered n-tuples that generate G. Now an n-tuple generates G iff its images 

in G / G  p generate this factor group. Assuming d(G) = n, we have that  G / G  p 

is elementary abelian of order pn, and the number of n-tuples generating it is 

(pn _ 1)(pn _ p ) . . .  (pn __pn--1). S i n c e  lal = pn+k we have that [GPl = pk, so the 

number of n-tuples generating G is (pn _ 1)(p~ _ p ) . . .  (pn _ p~-l )pnk.  We thus 

have 

1 
(3) ak(p-k)n = (pn _ 1)(pn _ p ) . . . ( p n  _ p n - 1 )  E IAut(G)l 

the summation being over all groups G of order p~+k such that  d(G) = n. 

Summing over all k, the left hand side becomes f (n ) ,  so, using (2), we obtain 

p -n2 1 

(4) (1 - 1/p~)2(1 - 1/p'~-1) a . . .  (1 - l /p)  2 = E IAut(a)l 

where this time the summation is over all abelian p-groups satisfying d(G) = n. 

Finally, we sum this expression over all n, and substitute the value x -- l i p  in 

the following identity of Euler ([HW], Theorem 351) 

Xn 2 

(5) E p ( n ) x n  = 1 + E (1 - x)2(1 - x2) 2 . . .  (1 - xn) 2" 
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This yields ~ p ( n ) p  -n  = ~ lf~Aut(G)l, proving Hall's formula. 

Remark 1: It is instructive to compare our proof with Hall's. The proof of [HW], 

Theorem 351, enumerates partitions by the size of the largest square contained 

in their dot diagram. The enumeration of partitions that Hall employs in [Ha38], 

although more elaborate, also starts from this square. In that  respect there is 

a similarity between Hall's proof and ours. More precisely, Hall associates with 

each partition another one, say ( n l , . . . ,  nk), whose largest component nl  is the 

abovementioned size of the largest square contained in the original partition. He 

then shows that  ~ p* (n)p -n ,  where p* (n) is the number of partitions of n associ- 

ated to ( n l , . . . ,  nk), is equal to 1/IAut(G)[, where G has invariants ( n l , . . . ,  nk). 

Since nl  = d(G), this equality of Hall's is a refinement of (4). 

Another point is that  Hall's proof is mostly combinatorial, only at the end the 

values of [G[ and [Aut(G)[ are inserted. Our proof is more group theoretical, and 

at least ~ 1/[Aut(G)[ occurs in it naturally. 

Remark 2: As noted in [Mc], a result similar to Theorem 1 holds, if we replace 

finite abelian groups by finite modules over a discrete valuation ring with a finite 

residue field (in particular, taking this ring to be the p-adic numbers, we have 

the case of abelian groups). To prove this version by our method, change F to a 

free module, and count the submodules of finite index. In the various formulas 

above we then have to replace p by q, the order of the residue field. 

Remark 3: It is possible that, by starting from a different choice for the group 

F, or by considering a different family of quotients, similar identities may be 

obtained. See also flu93], 2.2, for a different application of subgroup growth to 

partition identities. 
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